

Software Design Document for the Land Information System

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of Grand Challenge

Applications in the Earth, Space, Life, and Microgravity Sciences

Version 4.0

Revision history:
Version Summary of Changes Date

1.0 Initial release. 8/13/02

2.2 Release for Milestone H 3/18/03

3.1 Release for Milestone I 9/15/03

3.2 Revision on CT’s comments 10/7/03

3.3 Release for Milestone J 9/7/04

4.0 Release for Milestone K 2/11/05

Land Information System Software Design Document Version 4.0 2/11/05

ii

Table of Contents

TABLE OF CONTENTS ... II

LIST OF FIGURES .. II

LIST OF TABLES .. III

ACRONYMS AND TERMS ... IV

1 INTRODUCTION.. 1

1.1 PURPOSE AND GOALS ... 1

1.2 SCOPE .. 1

2.0 LAND SURFACE MODELING AND DATA ASSIMILATION ... 2

2.1 LIS DRIVER .. 2

2.2 COMMUNITY LAND MODEL (CLM) ... 3

2.3 THE COMMUNITY NOAH LAND SURFACE MODEL .. 4

2.4 VARIABLE INFILTRATION CAPACITY (VIC) MODEL... 4

3 LIS SOFTWARE ARCHITECTURE ... 5

3.1 SOFTWARE DATA STRUCTURES... 7

4 HARDWARE PLATFORMS FOR LIS ... 10

4.1 LIS CLUSTER ARCHITECTURE ... 11

4.2 SYSTEM MONITORING.. 11

4.2.1 Hardware monitoring data ... 12

4.2.2 Architecture and implementation.. 13

5 HIGH PERFORMANCE COMPUTING IN LIS .. 14

5.1 PARALLEL PROCESSING IN LAND SURFACE MODELING ... 15

6 DATA MANAGEMENT IN LIS ... 20

6.1 GRADS-DODS SERVER ARCHITECTURE.. 20

7 INTEROPERABILITY AND COMMUNITY REQUIREMENTS... 21

7.1 INTERNAL INTEROPERABILITY... 21

7.2 EXTERNAL INTEROPERABILITY .. 22

8 USER INTERFACE DESIGN .. 23

8.1 USER INTERFACE COMPONENTS.. 23

8.2 USER LEVELS ... 25

REFERENCES .. 28

List of Figures

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and

NOAH land models... 6

Figure 2: Overview of LIS software architecture and its components designed for LIS

cluster. A subset of the components, the LDAS and parallel computing

implementation, will also be tested on SGI Origin platforms. 7

Figure 3: Structure of modules in the LIS driver.. 8

Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes

and 192 compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and

Land Information System Software Design Document Version 4.0 2/11/05

iii

Gigabit NICs, and each compute node has a single Athlon CPU , 512MB RAM and

a Fast Ethernet NIC... 11

Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster.

This system will not be implemented on SGI since it is not under our control........ 14

Figure 6: LIS land surface modeling flowchart .. 16

Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A

compute node does not communicate to other compute nodes................................. 18

Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of

a master node. ... 19

Figure 9: GrADS-DODS server architecture. ... 21

Figure 10 : Interfaces for Interoperability in LIS.. 23

Figure 11: LIS user interface architecture. ... 24

Figure 12: Screenshot of LIS web entry page... 25

Figure 13: Sample design of LIS User Interface (Level 3)... 27

List of Tables

Table 1: Hardware monitoring and management data collection 13

Table 2: Configurable GrADS-DODS parameters for access to level 2 users of LIS...... 26

Land Information System Software Design Document Version 4.0 2/11/05

iv

Acronyms and Terms

ALMA: Assistance for Land-surface Modeling Activities

API: Application Programming Interface

CGI: Common Gateway Interface

CLM: Community Land Model

DODS: Distributed Ocean Data System

ESMF: Earth System Modeling Framework

GrADS: Grid Analysis and Display System

LDAS: Land Data Assimilation System

LIS: Land Information System

MRTG: Multi Router Traffic Grapher

NFS: Network File System

NOAH: National Centers for Environmental Prediction, Oregon State University, United

States Air Force, and Office of Hydrology Land Surface Model

PXE: Preboot Execution Environment

RAID: Redundant Array of Inexpensive Disks

SNMP: Simple Network Management Protocol

VIC: Variable Infiltration Capacity Land Surface Model

Land Information System Software Design Document Version 4.0 2/11/05

1

1 Introduction

 This Software Design Document establishes the software design for the Land

Information System (LIS). LIS is a project to build a high-resolution, high-performance

land surface modeling and data assimilation system to support a wide range of land

surface research activities and applications.

 This document has been prepared in accordance with the requirements of the Task

Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01

Increasing Interoperability and Performance of Grand Challenge Applications in the

Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational

Technologies (formerly High Performance Computing and Communications) Project.

1.1 Purpose and goals

 This document serves as the blueprint for the software development and

implementation of the Land Information System (LIS).

 The design goals of LIS are near real-time, high-resolution (up to 1km) global land data

simulation executed on highly parallel computing platforms, with well defined, standard-

conforming interfaces and data structures to interface and inter-operate with other Earth

system models, and with flexible and friendly web-based user interfaces.

1.2 Scope

 This document covers the design of all the LIS software components for the three-year

duration of the LIS project. The document focuses primarily on the implementation of

the LIS software on a general-purpose Linux cluster system, and most of the component

designs also apply to an SGI Origin 3000 system. This document does not cover design

for other hardware/software platforms.

 Specifically, this design covers the following aspects of LIS:

• Realistic land surface modeling. LIS will simulate the global land surface

variables using various land surface models, driven by atmospheric “forcing data”

(e.g., precipitation, radiation, wind speed, temperature, humidity) from various

sources.

• High performance computing. LIS will perform high-performance, parallel

computing for near real-time, high-resolution land surface modeling research and

operations.

• Efficient data management. The high-resolution land surface simulation will

produce a huge data throughput, and LIS will retrieve, store, interpolate, re-

project, sub-set, and backup the input and output data efficiently.

Land Information System Software Design Document Version 4.0 2/11/05

2

• Usability. LIS will provide intuitive web-based interfaces to users with varying

levels of access to LIS data and system resources, and enforce user security

policies.

• Interoperable and portable computing. LIS will incorporate the ALMA

(Assistance for Land surface Modeling Activities) and ESMF (Earth System

Modeling Framework) standards to facilitate inter-operation with other Earth

system models. In order to demonstrate portability of LIS, the land surface

modeling component will be implemented on a custom-designed Linux cluster

and an SGI Origin 3000.

2.0 Land Surface Modeling and Data Assimilation

 In general, land surface modeling seeks to predict the terrestrial water, energy and

biogeochemical processes by solving the governing equations of the soil-vegetation-

snowpack medium. Land surface data assimilation seeks to synthesize data and land

surface models to improve our ability to predict and understand these processes. The

ability to predict terrestrial water, energy and biogeochemical processes is critical for

applications in weather and climate prediction, agricultural forecasting, water resources

management, hazard mitigation and mobility assessment.

In order to predict water, energy and biogeochemical processes using (typically 1-D

vertical) partial differential equations, land surface models require three types of inputs:

1) initial conditions, which describe the initial state of land surface; 2) boundary

conditions, which describe both the upper (atmospheric) fluxes or states also known

as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function

of soil, vegetation, topography, etc., and are used to solve the governing equations.

The proposed LIS framework will include various components that facilitate global land

surface modeling within a data assimilation system framework. The main software

components of the system are:

• LIS driver: is a software system that is derived from the Land Data Assimilation

System (LDAS) that integrates the use of land surface models in a data

assimilation framework.

• Land surface Models: LIS will include 3 different land surface models, namely,

CLM, NOAH, and VIC.

These components are explained in detail in the following sections.

2.1 LIS driver

The LIS driver that controls the execution of different land models is derived from

LDAS. LDAS is a model control and input/output system (consisting of a number of

subroutines, modules written in Fortran 90 source code) that drives multiple offline one-

dimensional land surface models (LSMs). The one-dimensional LSMs such as CLM and

NOAH, which are subroutines of LDAS, apply the governing equations of the physical

processes of the soil-vegetation-snowpack medium. These land surface models aim to

characterize the transfer of mass, energy, and momentum between a vegetated surface

and the atmosphere. When there are multiple vegetation types inside a grid box, the grid

Land Information System Software Design Document Version 4.0 2/11/05

3

box is further divided into "tiles", with each tile representing a specific vegetation type

within the grid box, in order to simulate sub-grid scale variability.

 LDAS makes use of various satellite and ground based observation systems within a

land data assimilation framework to produce optimal output fields of land surface states

and fluxes. The LSM predictions are greatly improved through the use of a data

assimilation environment such as the one provided by LDAS. In addition to being forced

with real time output from numerical prediction models and satellite and radar

precipitation measurements, LDAS derives model parameters from existing topography,

vegetation and soil coverages. The model results are aggregated to various temporal and

spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg. The LDAS driver was used in the

baselining results presented for Milestone E. The LIS driver used for demonstrating code

improvements for Milestone H was developed by adopting the core LDAS driver and

implementing code improvements for enhancing performance. The structure of LDAS

driver was also redesigned using object oriented principles, providing adaptable

interfaces for ease of code development and extensibility. Details of the LIS driver is

presented in the interoperability document and the code improvements are presented in

the code improvements documents for Milestone F. The LIS driver was modified to run

on the LIS cluster and to include the VIC code for Milestone I.

 The execution of LIS driver starts with reading in the user specifications. The user

selects the model domain and spatial resolution, the duration and timestep of the run, the

land surface model, the type of forcing from a list of model and observation based data

sources, the number of ``tiles” per grid square (described below), the soil

parameterization scheme, reading and writing of restart files, output specifications, and

the functioning of several other enhancements including elevation correction and data

assimilation.

 The system then reads the vegetation information and assigns subgrid tiles on which to

run the one-dimensional simulations. The LIS driver runs its 1-D land models on

vegetation-based "tiles" to simulate variability below the scale of the model grid squares.

A tile is not tied to a specific location within the grid square. Each tile represents the area

covered by a given vegetation type.

 Memory is dynamically allocated to the global variables, many of which exist within

Fortran 90 modules. The model parameters are read and computed next. The time loop

begins and forcing data is read, time/space interpolation is computed and modified as

necessary. Forcing data is used to specify boundary conditions to the land surface model.

The LSMs in the LIS driver are driven by atmospheric forcing data such as precipitation,

radiation, wind speed, temperature, humidity, etc., from various sources. The LIS driver

applies spatial interpolation to convert forcing data to the appropriate resolution required

by the model. Since the forcing data is read in at certain regular intervals, the LIS driver

also temporally interpolates time average or instantaneous data to that needed by the

model at the current timestep. The selected model is run for a vector of ``tiles'',

intermediate information is stored in modular arrays, and output and restart files are

written at the specified output interval.

2.2 Community Land Model (CLM)

Land Information System Software Design Document Version 4.0 2/11/05

4

 CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90,

developed by a grass-roots collaboration of scientists who have an interest in making a

general land model available for public use. LIS currently uses CLM version 2.0. CLM

version 2.0 was released in May 2002. The source code for CLM 2.0 is freely available

from the National Center for Atmospheric Research (NCAR)

(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the

Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which

includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).

CLM is executed with all forcing, parameters, dimensioning, output routines, and

coupling performed by an external driver of the user's design (in this case done by

LDAS). CLM requires pre-processed data such as the land surface type, soil and

vegetation parameters, model initialization, and atmospheric boundary conditions as

input. The model applies finite-difference spatial discretization methods and a fully

implicit time-integration scheme to numerically integrate the governing equations. The

model subroutines apply the governing equations of the physical processes of the soil-

vegetation-snowpack medium, including the surface energy balance equation, Richards'

(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the

energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation

for the conductance of canopy transpiration.

2.3 The Community NOAH Land Surface Model

 The community NOAH Land Surface Model is a stand-alone, uncoupled, 1-D column

model freely available at the National Centers for Environmental Prediction (NCEP;

ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/). The name is an acronym representing the

various developers of the model (N: NCEP; O: Oregon State University, Dept. of

Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and

H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)). NOAH

can be executed in either coupled or uncoupled mode. It has been coupled with the

operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data

Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP Global Forecast

System (GFS) and its companion Global Data Assimilation System (GDAS). When

NOAH is executed in uncoupled mode, near-surface atmospheric forcing data (e.g.,

precipitation, radiation, wind speed, temperature, humidity) is required as input. NOAH

simulates soil moisture (both liquid and frozen), soil temperature, skin temperature,

snowpack depth, snowpack water equivalent, canopy water content, and the energy flux

and water flux terms of the surface energy balance and surface water balance. The model

applies finite-difference spatial discretization methods and a Crank-Nicholson time-

integration scheme to numerically integrate the governing equations of the physical

processes of the soil vegetation-snowpack medium, including the surface energy balance

equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil

heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976)

equation for the conductance of canopy transpiration.

2.4 Variable Infiltration Capacity (VIC) Model

Land Information System Software Design Document Version 4.0 2/11/05

5

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in

C, being developed at the University of Washington and Princeton University. The VIC

code repository along with the model description and source code documentation is

publicly available at http://hydrology.princeton.edu/research/lis/index.html. VIC is used

in macroscopic land use models such as SEA - BASINS

(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based

hydrological model, which parameterizes the dominant hydrometeorological processes

taking place at the land surface - atmospheric interface. The execution of VIC model

requires preprocessed data such as precipitation, temperature, meteorological forcing, soil

and vegetation parameters, etc. as input. The model uses three soil layers and one

vegetation layer with energy and moisture fluxes exchanged between the layers. The

VIC model represents surface and subsurface hydrologic processes on a spatially

distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can

approximate sub-grid scale variation in vegetation characteristics. VIC models the

processes governing the flux and storage of water and heat in each cell-sized system of

vegetation and soil structure. The water balance portion of VIC is based on three

concepts:

1) Division of grid-cell into fraction sub-grid vegetation coverage.

2) The variable infiltration curve for rainfall/runoff partitioning at the land

surface.

3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a vegetation

canopy. An energy balance is calculated at the land surface. A full description of

algorithms in VIC can be found in the references listed at the VIC website.

3 LIS software architecture

This section describes the software architecture of the components of LIS. The proposed

LIS framework will have the following functional components: (1) A system for high

resolution global land data assimilation system, involving several land surface models,

and land data assimilation technologies. (2) A web-based user interface that accesses data

mining, numerical modeling and visualization tools. To facilitate these features, LIS will

integrate the use of various software systems such as LDAS, land surface models,

GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land

surface modeling community to define new standards and also to assist in the definition

and demonstration of the ESMF. As a result, the design of LIS will also feature the

incorporation of new standards and specifications such as ALMA and ESMF.

Figure 1 shows the initial LDAS software architecture. As mentioned earlier, the

baselined version of LDAS includes CLM and NOAH land surface models. VIC land

surface model will be incorporated in the Milestone I version of LDAS and LIS.

Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built

upon the existing LDAS, with new components and expanded functionalities for the

support of parallel processing, GrADS-DODS server-based data management, ALMA

Land Information System Software Design Document Version 4.0 2/11/05

6

and ESMF-compliance, web-based user interfaces, and system management of a Linux

cluster platform

The function of LIS dictates a highly modular system design and requires all the

modules, or components, to work together smoothly and reliably. Figure 2 shows an

overview of the LIS software architecture and its components, and their interactions. LIS

will continuously take in relevant atmospheric observational data, and will subsequently

use it to force the land surface models, and the land surface simulation is carried out in a

highly parallel fashion. Meanwhile the large amount of output data will be efficiently

managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three

land models (CLM, NOAH, and VIC), and its input/output modules, will be partially

compliant with ESMF, while the output data variables and formats, and the variables

passed between LDAS and the three land models, will follow ALMA specification.

Finally, LIS also has software components to manage the parallel job processing and

monitor hardware status and manage them to ensure sustained high performance output

and high availability in the Linux cluster environment. Following is a list of LIS software

components:

• Land surface modeling: LDAS and the three land models – CLM, NOAH and

VIC. LDAS can be configured to run one, two or all the three land models at the

same time.

• Parallel processing: implementation of the parallelization scheme.

• GrADS-DODS server

• Data retrieving

• System monitoring: only applies to the LIS cluster environment.

By the use of modular programming and by conforming to well established standards

such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to

land surface modelers and researchers. A more detailed discussion of the ESMF

interfaces is located in Section 4 of the Interface Design for Interoperability.

Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and NOAH land

Land Information System Software Design Document Version 4.0 2/11/05

7

models.

Figure 2: Overview of LIS software architecture and its components designed for LIS cluster. A

subset of the components, the LDAS and parallel computing implementation, will also be tested on

SGI Origin platforms.

3.1 Software data structures

This section describes the internal software data structures in LIS. As described earlier,

the main component that drives different LSMs is the LIS driver. The one-dimensional

land surface models such as CLM, NOAH, and VIC are included as subroutines of the

LIS driver. LDAS, CLM, and NOAH are written in Fortran 90, and VIC is written in C.

The LIS driver code is designed in a modular fashion, with a number of modules used to

encapsulate data as well as parameters that are used to solve different governing

equations. Please refer to the LIS code documentation http://lis.gsfc.nasa.gov/source/ for

a detailed description of the source code.

Figure 3 shows the organization of the main modules in the LIS driver.

Inheritance can be defined as the sharing of structure and behavior among classes in a

hierarchical relationship. Although F90 does not directly support inheritance, it can be

emulated using software constructs (ref: Decyk, V. K., Norton, C. D., and Szymanski, B.

K. "How to Express C++ concepts in Fortran 90".

http://exodus.physics.ucla.edu/Fortran95/ExpressC++.pdf)

For example, inheritance in LIS is simulated by the lsm_module that captures the

behavior of a land surface model. It also provides a hierarchical structure to all LSMs.

The "abstract" interfaces in lsm_module (encapsulating the main behavior associated

with the operation of a LSM) need to be implemented by all LSMs in LIS. As a standard

for land surface model parameters, input data, and output evolves, this structure is further

Land Information System Software Design Document Version 4.0 2/11/05

8

expected to allow code sharing among different LSMs, all of them using common

routines for intialization, setup, output etc.

A more detailed description of the design is presented in the interoperability design

document.

Figure 3: Structure of modules in the LIS driver

A brief description of the modules are presented below:

LIS driver Modules

lisdrv: is the main program in LIS driver. It controls the overall execution, and delegates

tasks to the appropriated modules

Land Information System Software Design Document Version 4.0 2/11/05

9

lisdrv_module: This module contains the driver routines that control program execution,

controlling of time, etc.

lsm_module: This module provides an abstraction of a land surface model, defining the

interfaces and subroutines that are required for the execution of an LSM. The interfaces

in this module need to be extended for incorporation of a new LSM into LIS.

baseforcing_module: Similar to lsm_module, this module captures the behavior

associated with introducing a new forcing scheme.

grid_module: This module is an abstract representation of a "grid" used in the LIS

driver. The module includes non model specific parameters such as lat/lon and

input/output forcing variables.

tile_module : This module is a representation of the "tile" described in section 2.1 that is

used to simulate sub-grid scale variability. This module includes specification of non-

model specific tile variables, such as lat/lon of tile, row/column of tile and properties

associated with a tile.

lis_module : This module specifies the variables used in the LIS driver such as the model

domain specifications, type of land surface model used, type of forcing, specification of

source files, etc. It does not include specification of tile space or grid space variables.

This module is used by the main driver and subroutines that perform

non-model specific computations such as spatial/temporal interpolation.

obsradforcing_module: This module contains interfaces and subroutines that control

the incorporation of observed radiation forcing.

obsprecipforcing_module: This module contains the interfaces and subroutines that

control the incorporation of observed precipitation forcing.

spmdMod: This module contains MPI routines for initialization.

time_manager: This module contains variables and routines for the control of time.

time_manager provides methods that eventually call the ESMF time manager.

tile_spmdMod: This module contains routines for domain decomposition in tile space.

grid_spmdMod: This module contains routines for domain decomposition on the grid

domain.

bilinear_interpMod and conserv_interpMod: These modules contains routines for

calculating parameters required for spatial interpolation

agrmetdomain_module: This module contains routines for calculating parameters

required for spatial interpolation for AGRMET radiation forcing data

Land Information System Software Design Document Version 4.0 2/11/05

10

cmapdomain_module: This module contains routines for calculating parameters

required for spatial interpolation for cmap precipitation forcing data

LSM specific modules

The LSMs included in the LIS driver implements the interfaces and routines defined in

lsm_module. Currently the LIS driver includes NOAH and CLM models. The main

Modules in these models are described below.

clmtype: This module contains the definition of variables associated with CLM.

clm_varcon: Defines the constants associated with CLM model execution.

clm_varctl : Defines the run control variables associated with CLM model execution.

noah_module : This module specifies one-dimensional NOAH land driver variable

specification. It includes NOAH state parameters, output variables, etc.

VIC structures

VIC includes a number of structures that are used to encapsulate model options, forcing

parameters, global simulation parameters, soil and vegetation parameters, etc. The main

structures are:

option_struct : This structure is used to store model options.

global_param_struct : This structure is used to store the global parameters defined for

the current simulation.

soil_con_struct : This structure is used to store the constant variables for the soil in the

current grid cell.

veg_con_struct : This structure is used to store all constant parameters for the vegetation

types in the current grid cell.

atmos_data_struct : This structure is used to store the meterological forcing data for

each time step.

cell_data_struct : This structure is used to store the grid cell specific variables, not

included in the vegetation structures.

energy_bal_struct : This structure is used to store all variables used to compute the

energy balance and soil thermal fluxes.

snow_data_struct: This structure is used to store all variables used by the snow

accumulation and ablation algorithm, and the snow interception algorithm.

4 Hardware Platforms for LIS

This section describes the hardware operational platforms intended for LIS. The SGI

Origin 3000 will be used to implement and demonstrate only the high resolution, parallel,

global land surface modeling and data assimilation components

(LDAS/CLM/NOAH/VIC) of LIS. The fully operational LIS (with user interfaces and

visualization components such as GrADS - DODS) will be demonstrated on a custom

designed Linux cluster. The following section describes the hardware design of the

cluster.

Land Information System Software Design Document Version 4.0 2/11/05

11

4.1 LIS cluster architecture

Internet

Gigabit Ethernet

2
4
 c

o
m

p
u

ti
n

g
 n

o
d
e

s

24-port 10/100 switches
with gigabit uplink

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Internet

IO Node 0 IO Node 1 IO Node 2 IO Node 3 IO Node 4 IO Node 5 IO Node 6 IO Node 7

Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192

compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and Gigabit NICs, and each

compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC.

 Figure 4 shows the physical architecture of the LIS Linux cluster. The cluster consists of

192 computing nodes. The cluster also includes 8 IO (input – output) nodes, specifically

to handle the huge data management requirements. These nodes are interconnected with 8

Ethernet switches.

 The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-

cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches.

Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.

 The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network

traffic resulting from non-local file IO operations, and for the spreading of data storage so

each IO node does not have to deal with single big files. So in average each IO node will

only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the

output information, which makes the output volume manageable.

4.2 System Monitoring

Land Information System Software Design Document Version 4.0 2/11/05

12

The system monitoring component is responsible for monitoring, maintaining and

administering the LIS system on the Linux cluster to ensure its reliable operation and

optimal performance output.

We categorize the system management function into four levels: hardware level,

interconnect level, operating system level and application software level. For the SGI

Origin 3000 platform, we are not involved in the management of the hardware and

interconnect levels. But for the Linux cluster, the hardware and interconnect level

management is our responsibility and is critical to the overall stability and performance

of the LIS system.

The hardware level system management involves power-up and shutdown of the nodes,

booting strategy and hardware status monitoring. Interconnect level management requires

the monitoring of the link status of the network nodes, bandwidth usage and traffic

statistics. Operating system level management takes care of system resource usages, such

as CPU, memory and disk space usage. Application level management oversees the

progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and

obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be

maintained for LDAS and the land surface models during the operation of LIS. The

diagnostic logs will be available to the end users.

4.2.1 Hardware monitoring data

The following table summarizes the system data of various levels the management

subsystem is designed to collect and analyze.

Land Information System Software Design Document Version 4.0 2/11/05

13

Table 1: Hardware monitoring and management data collection

Category Data Items Update frequency

Overall cpu/mem of each process 1min

Overall progress of whole job 2min

Progress of each process 1min

Timing of each module sampled, off-line

Memory usage of each module sampled, off-line

Total memory usage & biggest user 2min

Total CPU usage & biggest user 2min

Total disk space usage 2min

System up-time and running procs 2min

Bandwidth usage of each node 2min

Bandwidth usage of switches 2min

Latency measurements 2min

Packet drops measurements 2min

Fan speeds 10min

Chasis temperature 10min

Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

4.2.2 Architecture and implementation

The variety of system variables and management duties requires us to design a

management system with modules performing individual and well-defined tasks. Figure 5

shows the structured design of the system management functionalities for the Linux

cluster platform. We will not implement such a system on SGI because the SGI platform

is not under our management control.

On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”

technology for powering up the nodes smoothly in a well-defined pattern. The nodes will

be able to boot across the network with the PXE technology, as well as from the local

disk, to centralize system software management. After booting, each node’s hardware

parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will

be collected by kernel modules called “lm-sensors”, and sent to the central management

station with web-based display with automatic updates.

On the interconnect level, we will use SNMP protocol as the underlying data collection

and management mechanism, interfaced with MRTG for web-based display of network

statistics. Additional network data can also be collected by Big Brother system and

network monitor, also with web output.

Land Information System Software Design Document Version 4.0 2/11/05

14

On the operating system level, we will use SNMP and various OS shell commands and

utilities to collect system data, and use MRTG and Big Brother as the interface.

On the application level, we will develop CGI scripts, interfaced with OS commands and

utilities, to provide a web-interface for the monitoring and control of LIS jobs and

processes. Standard performance profiling and debugging tools will be used off-line to

analyze sample runs for trouble-shooting and performance fine-tuning.

OS resource

management

Interconnect

management

Hardware

management

Application
management

Monitoring and

management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software

system

OS commands

SNMP

PXE

Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster. This

system will not be implemented on SGI since it is not under our control.

5 High performance computing in LIS

Accurate initialization of the land surface moisture, carbon, and energy stores in a fully

coupled climate system is critical for meteorological and hydrological prediction.

Information about land surface processes is also of critical importance to real-world

applications such as agricultural production, water resource management, flood

prediction, water supply, etc. The development of LDAS has been motivated by the need

for a system that facilitates land surface modeling with an assimilation system to

incorporate model derived and remotely sensed data. LDAS system has been successfully

used in simulations for North America at 1/8 degree resolution in both real time and long

term (50 years) retrospective simulations. However, to truly address the land surface

initialization and climate prediction problem, LDAS needs to be implemented globally at

high resolution (1km). The computational and resource requirements increase

significantly for global modeling at such high resolutions. The proposed LIS system will

aim to make use of scalable computing technologies to meet the challenges posed by the

global, high-resolution land surface modeling.

Land Information System Software Design Document Version 4.0 2/11/05

15

5.1 Parallel processing in land surface modeling

Parallel computing is a powerful programming paradigm to deal with computationally

intractable problems. The notion behind parallel programs is to divide the tasks at hand

into a number of subtasks and solve them simultaneously using different processors. As a

result, a parallel system can improve the performance of the code considerably.

The land surface modeling component in LIS is designed to perform high-performance,

parallel simulation of global, regional or local land surface processes with initially three

land surface models: the CLM model, the NOAH model and the VIC model. Specifically,

the land surface modeling component will interact with the data management components

to obtain properly formatted input forcing data, and pass the forcing data, along with

other static parameters, to the three land surface models through the LIS driver. Each of

the land surface models carries out the simulation on a distributed, parallel hardware

platform, either a Linux cluster or a SGI Origin 3000. The results are passed to the output

component, which interacts with the data management subsystem to handle the output

data.

Land Information System Software Design Document Version 4.0 2/11/05

16

Set up model
parameters

Read restart files

Initialize output
arrays and analysis

Get base,

precipitation, and
radiation forcing

LSM

 starts

Get configuration

Finish all

tiles?

Apply elevation

correction to forcing

Transfer forcing into
model tiles

Read model specific

data: LAI, albebo

Call CLM/NOAH/VIC

Write output

 Write daily restarts

Return surface
fields to atmos mdls

No

Yes

End time reached
No

Yes

LIS driver starts

Modeling ends

Apply spatial and

temporal
interpolation

Figure 6: LIS land surface modeling flowchart

As shown in Figure 6, and described in detail in the land surface model documentation,

land surface models proceed in a manner similar to other physical models. Modeling

proceeds given prior knowledge of the spatial and temporal domains of the simulation, in

addition to initial conditions and parameters required to solve the equations of water and

energy conservation within that domain. Modeling proceeds according to increments of

Land Information System Software Design Document Version 4.0 2/11/05

17

time (“time steps”, typically 15 minutes), until the ending time is reached and data is

written out for future runs and analysis.

 The land surface modeling subsystem is designed to be running in parallel, both on a

Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors.

Although the hardware architecture differs greatly between the distributed-memory Linux

cluster and the shared-memory SGI Origin 3000, our implementation of the land surface

modeling programs will make this architectural difference fairly transparent: On the

Linux cluster, each node will run a copy of the land surface modeling process; on the SGI

Origin, each CPU will run a copy. Thus we establish a direct correspondence between a

node in the Linux cluster and a CPU in the Origin 3000.

Land surface processes have rather weak horizontal coupling on short time and large

space scales, which enables highly efficient scaling across massively parallel

computational resources. LIS aims to take advantage of this weak horizontal coupling of

land surface processes by using a coarse-grained parallelization scheme, which does not

require communication between the compute nodes. This design fits well with the

distributed memory nature of the Linux cluster architecture.

 The parallelization scheme employed in the land surface modeling component in LIS is

based on a master slave paradigm, where a master processor performs the initializations,

and domain decomposition. The compute nodes perform computations on the

decomposed domain. The master processor carries out the global output routines once the

compute nodes finish their tasks. The parallel processing component plays a critical role

to connect the land surface modeling job to the underlying multi-processor parallel

computing hardware platform, in our case, a Linux cluster or an SGI Origin 3000, to

achieve the goal of near real-time processing of high-resolution land surface data.

 We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points

than the 2ºx2.5º resolution. The baselining report from Milestone E estimates that the

memory requirements at 1km is in the order of terabytes, which is unmanageable either

on the Linux cluster or on the shared memory SGI platforms. The code improvements

and redesigns conducted for Milestone F significantly reduced these memory

requirements. However, the projected memory requirements from the improved LIS code

from Milestone F still estimates approximately 500GB for 1km execution. This makes

the simple paradigm, where the master handles the global initializations, intractable. To

avoid the bottleneck from this scheme, we plan to redesign the input data flow taking

advantage of the GrADS-DODS (GDS) servers’ features. GDS provides capabilities for a

client to dynamically retrieve subsets of data on a global domain. A GDS Server on a

master node will perform the tasks of serving data to the compute nodes. The domain

decomposition can be achieved by the compute nodes making requests for data on the

domain they are performing the computation, instead of a master processor distributing

data to them.

To satisfy the requirements of real-time operation, the job, which includes a grid

representation of the global land surface, must be split into smaller pieces and run in

parallel. We plan to divide the global surface into 10,000 small land pieces, and with 1km

Land Information System Software Design Document Version 4.0 2/11/05

18

resolution, each piece would require about 5 times as many computations as the 2ºx2.5º

LDAS, and will take a single computing node about 200MB memory to run, and 10

minutes to finish a 1-day simulation, based on the initial performance baselining of

LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions. The Linux cluster can

consume approximately 200 pieces per round, and under ideal conditions, it will take the

whole cluster about 50 rounds to finish the whole job. This will take 500 minutes, or

about 9 hours, to finish a 1-day simulation of the whole global land surface, which

satisfies the real-time requirement with enough extra room. We expect that the timings on

the SGI Origin will be comparable to those on the cluster, although memory and disk

limitations, some imposed by the queue structure, will likely prohibit effective use of that

system for demonstrating LIS in a near-real-time mode. However, we plan to

demonstrate the LIS on the SGI Origin system as proof-of-concept.

 A compute node’s job is to run a copy of the land surface modeling subsystem in

its process space, compute a piece of land surface obtained from the IO node, and request

another piece of land surface from the IO node as soon as it finishes the current piece,

until the IO node refuses to give it any pieces, in which case there are no more land

pieces are available and the compute node’s job is done. Figure 7 shows the flow chart of

the compute node’s job handling process.

Node k gets
land piece k

Node k computes

land piece k

Node k finishes

land piece k

Node k notifies
IO nodes and sends

data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute

node does not communicate to other compute nodes.

Land Information System Software Design Document Version 4.0 2/11/05

19

Job starts

Divide globe into N

land pieces, put in
unfinished pool

Grant node k land
piece n

Any node

requests?

Start timer k

No

No

No

Yes, timer k

expired

Yes, node k requested

Yes, node k
reported

Any land

pieces left?

Run

finished

No

Any node reports

finished job?

Any timer

expired?

Reset timer k
remove land piece n

from the pool

Assume node k

crashed, return
piece n to the pool

Yes

Keep track of the

3 pools

n n

n n

n n

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master

node.

 We propose to use a modified version of the “pool of tasks” scheme for the parallel

processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave

programming notion, where a single processor will act as a master node and distribute

jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes

will act as a master node and another IO node will be designated as a backup to it.

The master node will keep three tables on hand when starting the job: table of unfinished-

jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed

in the "unfinished" table, and each compute node comes to the master to fetch a piece

from it, and starts working on it. The master node then moves the fetched jobs to the

"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will

be based on the existing knowledge of a single execution of a land surface model. When

a compute node finishes a job and notifies the master node before the job’s corresponding

timer runs out, this piece is regarded a finished job, and the master node moves it from

the "fetched" table to the "finished" table. And the compute node goes on to fetch another

job until the "unfinished" table is empty. If a fetched job's timer runs out before the

compute node reports back, the master node then assumes that that particular compute

node must have crashed, and then moves that timed-out job from the "fetched" table back

Land Information System Software Design Document Version 4.0 2/11/05

20

to the "unfinished" table for other compute nodes to fetch. Figure 8 shows the flowchart

(left) of the master node’s job handling and scheduling process, and the various status of

the three tables (right) the master node uses to keep track of the job progress at different

corresponding stages in the flowchart.

To maximize throughput of the system in a parallel environment, load balancing is

required to keep the compute nodes busy by efficiently distributing the workload. The

use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing

the idle times of compute nodes, since the nodes that finish their computations will

request more tasks than the ones that require more time for their computations. This

automatic, asynchronous scheduling help in keeping the compute nodes busy without

having to wait for other node's computations.

As shown in Figure 8, as the land surface modeling process starts, the master node

divides the globe into a number of smaller pieces. The inputs required by the land surface

models, namely, initial conditions, boundary conditions, and parameters will be provided

to the compute nodes before the land surface model run begins. The modeling process

can be a fresh initialization (cold start) or a restart from a previously finished run. This

process also requires preprocessing of the data such as time/space interpolation. The

output from each compute node, after the computation, will be reassembled at the IO

nodes.

6 Data Management in LIS

The data management subsystem in LIS is composed of the following functions: input

data retrieval from the Internet, data pre-processing and post-processing, data

interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It

links the other subsystem together, and ensures smooth end-to-end data flow, from the

input raw data all the way to the output data satisfying LIS users’ various requests. The

following sections describe the data flow and volume used in LIS operation, the use of

GrADS-DODS server for data management, visualization, the Live Access Server (LAS)

server for visualization, etc., and other functions such as data retrieval.

The full data management design is now documented in the separate Data Management

Design Document. This section only describes the software architecture of the GrADS-

DODS server.

6.1 GrADS-DODS server architecture

 GrADS-DODS servers will be employed both to serve the input data to the land

surface computing code, and to serve the output to the Internet users. Figure 10 shows the

architecture of the GrADS-DODS server. A GrADS-DODS server uses a typical client-

server architecture to communicate with the DODS clients. The communication protocol

between a client and a server is HTTP. A GrADS-DODS server has the following

components: Java servlets contained in the Tomcat servlet container, to handle the client

requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS

requests and package output data; interface code, to translate the DODS requests into

Land Information System Software Design Document Version 4.0 2/11/05

21

GrADS calls; and finally, GrADS running in batch mode, to actually process the requests,

and perform data-retrieving, sub-setting and processing on the server side.

The LAS Server provides an additional web interface for users to search a data catalog, to

visualize data interactively, and to download the data in various formats. LAS uses perl

scripts to retrieve the metadata from the LIS output files, and save the metadata in a SQL

database system, MySQL. The LAS server and its accompanying database, MySQL, will

be running on the same LIS cluster node.

G rA D S

b a tc h m o d e

D a ta s e ts in G rA D S -

s u p p o r te d fo rm a t: b in a ry ,
G R IB , N e tC D F , H D F , e tc .

In te r fa c e

c o d e

D O D S

s e rv e r A P I

J a v a s e rv le t

T o m c a t

G
rA

D
S

-D
O

D
S

 s
e

rv
e
r

D O D S c lie n t

C lie n t re q u e s ts S e rv e r re s p o n s e d a ta

Figure 9: GrADS-DODS server architecture.

7 Interoperability and Community Requirements

Interoperability means the ability of a system to use parts of another system and also

provide parts of itself that can be used by other systems to ease the cost of development

and foster better interaction between different research groups. Code interoperability is

important not only between components within an application, but also between different

applications. LIS defines two different types of interoperability: internal and external.

Internal interoperability mainly deals with the aspects of making components within LIS

interoperable and the external interoperability deals with the interaction of LIS with other

related scientific community applications and standards.

7.1 Internal Interoperability

 Interoperability within the LIS will allow for the addition of improved sources of input

data and land surface models as they become available. As currently designed, the LIS

Land Information System Software Design Document Version 4.0 2/11/05

22

has three land surface models available for use. The LIS community has identified a

number of other land surface models that would be scientifically beneficial. Likewise

with the input data, additional sources of input data would be scientifically beneficial if

they were available in LIS.

Interoperability within the LIS system is achieved by reorganizing the LIS driver to

organize the code and module control into a framework by designing flexible and

adaptive interfaces between subsystems. The LIS driver makes use of the advanced

features of the Fortran 90 programming language, which are especially useful for object-

oriented programming. The design uses object-oriented principles to provide a number

of well-defined interfaces or "hook points" for adding additional land surface models and

input data sets. These interfaces are implemented by using a number of virtual function

tables and the actual delegation of the calls at runtime is done at runtime by resolving the

function names from the table. C language allows the capabilities to store functions, table

them, and pass them as arguments. F90 allows passing of functions as arguments. By

combining both these languages, LIS uses a complete set of operations with function

pointers. The LIS driver will provide the land surface modeling community an avenue to

easily add additional models or input data through the use of such an extensible system.

A more detailed description can be found in Section 3 of the Interface Design for

Interoperability for the Land Information System on the LIS web site.

7.2 External Interoperability

The LIS design also needs to be interoperable with frameworks outside of LIS so that the

outputs from LIS can be useful to weather and climate models. External

interoperability is achieved by adopting the ALMA data exchange convention and by

being a partially compliant component of the ESMF. By following the ALMA standard,

the LIS land surface modeling system is guaranteed to exchange data with other land

surface modeling systems that are also ALMA-compliant.

ESMF compliance will allow us to interact with other Earth system models, such as

atmospheric models or climate models with compliant interfaces. ESMF is intended to

provide a structured collection of building blocks that can be customized to develop

model components. ESMF can be broadly viewed as consisting of an infrastructure of

utilities and data structures for building model components and a superstructure for

coupling and running them. ESMF provides a utility layer that presents a uniform

interface for common system functions. LIS has implemented a number of ESMF

utilities including configuration, time management and use of basic ESMF data

structures. ESMF also defines a number of guidelines for applications that are intended

to be coupled. For gridded components, ESMF provides standard methods for

components to be initialized in parallel configurations and destroyed. LIS has also

implemented a prototype using these interfaces to demonstrate pseudo-coupling with an

atmospheric component.

Figure 10 shows the structure of both internal and external interfaces in LIS. The input

and output data in LIS will conform to ALMA data exchange standards. The LIS driver

will provide a structured set of interfaces for incorporation of new LSMs. Further, the

Land Information System Software Design Document Version 4.0 2/11/05

23

LIS driver will provide an ESMF complaint interface and use the ESMF_State to

exchange information with other ESMF compliant systems. A more detailed description

of interoperability design issues can be found in the Interface Design for Interoperability

for the Land Information System at the LIS web site.

Figure 10 : Interfaces for Interoperability in LIS

8 User interface design

The user interface in LIS is an important component of LIS that will allow the interactive,

flexible, use of the LIS hardware and software to users. The LIS user interface is intended

to be web-based, and designed to allow for cascading complexity depending on the level

of user’s need to control the system. The following sections present various facets of the

user interface design of LIS.

8.1 User interface components

The user interface subsystem takes a typical multi-tier client-server system architecture.

On the client side, a user has three types of client programs to use as the front-end: a web

browser, an ftp client program (which can be integrated in a web browser), or a DODS

client program. On the server side, a general purpose web server will be used to serve

clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS

clients, and a FTP server to server ftp clients. Besides these components, CGI scripts and

CGI-GrADS gateway scripts will be used as the middleware to perform dynamic

Land Information System Software Design Document Version 4.0 2/11/05

24

processing based on users’ interactive requests sent through web browsers. The

following figure shows the user interface architecture design.

Figure 11: LIS user interface architecture.

.

Additional information on the User Interface Design for the Land Information System

can be found at the LIS web site http://lis.gsfc.nasa.gov/documentation/.

Land Information System Software Design Document Version 4.0 2/11/05

25

Figure 12: Screenshot of LIS web entry page.

8.2 User Levels

 Outside users accessing the LIS are categorized into three levels, associated with

different levels of data access and security requirements.

 Level 1 users are the general public, who will access the LIS data primarily through a

standard web browser. Information provided to this class includes static images and text,

and some limited interactive content such as GIF/JPG/PNG images generated on the fly

in response to users' regulated web input. The static content, most of which is static html

pages, is served via the web server, while the interactive content is generated via a three-

tier architecture with server-side GrADS as the image engine and below it the GrADS-

DODS server as the data engine to feed the server-side GrADS. This group of users does

not have direct access to the data or LIS scientific computing power system, and their

usage of system resources is very limited. Therefore, for this class of users we do not

enforce any additional authentication or authorization procedures. It is also our intention

to facilitate easy access to the data for education and outreach purposes. Figure 14 is a

screenshot of the LIS entry page.

Level 2 users have direct access to LIS data, either through our GrADS-DODS server by

using a DODS client, or directly through HTTP downloads. The GrADS-DODS server

provides the users with the ability and flexibility to get only a sub-set of the data they

need. To be authorized as Level 2 users, they will have to register with us first by filling

Land Information System Software Design Document Version 4.0 2/11/05

26

out web forms, and they will be authenticated using name and password before accessing

the data. The GrADS-DODS server will impose a limit on system resource usages. The

GrADS-DODS server allows the system administrator to limit the system usage by

configuring the following parameters for each authorized address:

Table 2: Configurable GrADS-DODS parameters for access to level 2 users of LIS

Parameter Description

Subset limit Sets the maximum size in megabytes of a

subset

Generate limit Sets the maximum size in kilobytes of a

generated dataset

Upload limit Sets the maximum size in kilobytes of an

uploaded dataset

Time limit Sets the maximum time in milliseconds

that a dataset generation task is allowed

Hit limit Sets the maximum number of hits per hour

permitted from a specific IP

Abuse limit Sets that length of time in hours an IP

address will be blocked out after exceeding

the hit limit

Deny datasets A comma delimited list of datasets that

should not be accessible

Allow datasets A comma delimited list of datasets that

should be accessible

Level 3 users will have access to the parallel computing power of the LIS system,

including an account on the LIS cluster and a web interface for submitting LIS jobs, as

shown in Figure 14. The configuration parameters entered into the web form will be

converted to LIS configuration files to control model runs. A LIS configuration file is

submitted to the LIS scheduler which runs the job and places the output in a user-unique

output directory in proper format for visualization. All the parameters will have default

values.

Land Information System Software Design Document Version 4.0 2/11/05

27

Figure 13: Sample design of LIS User Interface (Level 3)

Land Information System Software Design Document Version 4.0 2/11/05

28

References

ALMA: http://www.lmd.jussieu.fr/ALMA/

Atlas, R. M., and R. Lucchesi, File Specification for GEOS-DAS Gridded Output.

Available online at: http://dao.gsfc.nasa.gov/DAO_docs/File_Spec_v4.3.html, 2000.

Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A.

Betts, “Modeling of land-surface evaporation by four schemes and comparison with FIFE

observations”, J. Geophys. Res., 101, D3, 7251-7268, 1996.

CLM: http://www.cgd.ucar.edu/tss/clm/

Collatz G. J., C. Grivet, J. T. Ball, and J. A. Berry, J. A. “Physiological and

Environmental Regulation of Stomatal Conductance: Photosynthesis and Transpiration:

A Model that includes a Laminar Boundary Layer”, Agric. For. Meteorol. , 5, pp 107 --

136, 1991.

Derber, J. C., D. F. Parrish, and S. J. Lord, “The new global operational analysis system

at the National Meteorological Center”, Wea. And Forecasting, 6, pp 538-547, 1991.

ESMF: http://www.esmf.ucar.edu/

GrADS-DODS server: http://grads.iges.org/grads/gds/

Hamill, T. M., R. P. d’Entremont, and J. T. Bunting, “A description of the Air Force real-

time nephanalysis model”, Wea. Forecasting, 7, pp 238-306, 1992.

Hofstee, H. P., J. J. Likkien, and J. L. A. Van De Snepscheut "A Distributed Implementation of a

Task Pool". Research Directions in High-Level Parallel Programming Languages, pp 338--348,

1991.

Jarvis, P. G., “ The interpretation of leaf water potential and stomatal conductance found

in canopies in the field”, Phil. Trans. R. Soc. London, Ser. B, 273, pp 593 – 610, 1976.

Kopp, T. J. and R. B. Kiess, “The Air Force Global Weather Central cloud analysis

model”, AMS 15
th

 Conf. on Weather Analysis and Forecasting, Norfolk, VA, pp 220-222,

1996.

LDAS: http://ldas.gsfc.nasa.gov/

NOAH: http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J. Stobbie, and A. da

Silva, “Documentation of the Goddard Earth Observing System (GEOS) Data

Land Information System Software Design Document Version 4.0 2/11/05

29

Assimilation System – Version 1”, NASA Technical Memorandum 104606, 4, pp 44,

1995.

Reynolds, C. A., T. J. Jackson, and W. J. Rawls, “Estimating available water content by

linking the FAO Soil Map of the World with global soil profile databases and pedo-

transfer functions” American Geophysical Union, Fall Meeting, Eos Trans. AGU, 80,

1999.

Richards, L. A., “Capillary conduction of liquids in porous media”, Physics, 1, pp 318—333,

1931.

Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin, N. W. Junker, and Y.

Lin, “Changes to the operational "early" eta analysis / forecast system at the National Centers for

Environmental Prediction” Wea. Forecasting, 11, pp 391-413, 1996.

Shapiro, R. “A simple model for the calculation of the flux of direct and diffuse solar radiation

through the atmosphere”, AFGL-TR-87-0200, Air Force Geophysics Lab, Hanscom AFB, MA.

Turk, F. J., G. Rohaly, J. D. Hawkins, E. A. Smith, A. Grose, F. S. Marzano, A. Mugnai, and V.

Levizzani, “Analysis and assimilation of rainfall from blended SSM/I, TRMM, and geostationary

satellite data”, AMS 10
th
 Conf. On Sat. Meteor. and Ocean., Long Beach, CA, 9-14 January, pp

66-69, 2000.

VIC: http://hydrology.princeton.edu/research/lis/index.html.

